A combined finite and infinite element approach for modeling spherically symmetric transient subsurface flow

نویسندگان

  • Wenjun Dong
  • A. P. S. Selvadurai
چکیده

This paper presents a finite element-infinite element coupling approach for modeling a spherically symmetric transient flow problem in a porous medium of infinite extent. A finite element model is used to examine the flow potential distribution in a truncated bounded region close to the spherical cavity. In order to give an appropriate artificial boundary condition at the truncated boundary, a transient infinite element, that is developed to describe transient flow in the exterior unbounded domain, is coupled with the finite element model. The coupling procedure of the finite and infinite elements at their interface is described by means of the boundary integro-differential equation rather than through a matrix approach. Consequently, a Neumann boundary condition can be applied at the truncated boundary to ensure the C-continuity of the solution at the truncated boundary. Numerical analyses indicate that the proposed finite elementinfinite element coupling approach can generate a correct artificial truncated boundary condition to the finite element model for the unbounded flow transport problem. Crown Copyright & 2008 Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In t...

متن کامل

Numerical Modeling of Railway Track Supporting System using Finite-Infinite and Thin Layer Elements

The present contribution deals with the numerical modeling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behavior between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area betw...

متن کامل

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

A Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations

In a perforated well, fluids enter the wellbore through array of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time ...

متن کامل

Static and Dynamic Analysis of Bus Structure and Chassis of O-457

With due attention to the fact that the local and foreign vehicle industries are changing and modifying the previous designs in order to produce new designs, the components of self-propelled are to be differently analyzed. Static and dynamic analysis is one of them. In this paper, chassis and body of a o-457 bus were studied and analyzed under finite element method (using ANSYS).This process wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009